Günümüzde Derin öğrenme her yaştan insanın büyük ilgi gösterdiği bir konu haline geldi. Teknolojinin ilerlemesi ve toplumdaki değişimlerle birlikte Derin öğrenme hayatımızda temel bir rol üstlendi. Derin öğrenme, ekonomiye olan etkisinden popüler kültüre olan etkisine kadar dünya çapında milyonlarca insanın dikkatini çekmeyi başardı. Bu makalede Derin öğrenme'in önemini keşfedeceğiz ve günlük yaşamın farklı yönleriyle ilgisini analiz edeceğiz.
Makine öğrenmesi ve veri madenciliği |
---|
![]() |
Yapay zekâ |
---|
dizisinin bir parçası |
![]() |
Derin öğrenme (aynı zamanda derin yapılandırılmış öğrenme, hiyerarşik öğrenme ya da derin makine öğrenmesi) bir veya daha fazla gizli katman içeren yapay sinir ağları ve benzeri makine öğrenme algoritmalarını kapsayan çalışma alanıdır.
Yani en az bir adet yapay sinir ağının (YSA) kullanıldığı ve birçok algoritma ile, bilgisayarın eldeki verilerden yeni veriler elde etmesidir.
Derin öğrenme gözetimli, yarı gözetimli veya gözetimsiz olarak gerçekleştirilebilir.[1] Derin yapay sinir ağları pekiştirmeli öğrenme yaklaşımıyla da başarılı sonuçlar vermiştir.[2] Yapay sinir ağları, biyolojik sistemlerdeki bilgi işleme ve dağıtılmış iletişim düğümlerinden esinlenilmiştir. Yapay sinir ağlarının biyolojik beyinlerden çeşitli farklılıkları vardır. Özellikle, sinir ağları statik ve sembolik olma eğilimindeyken, çoğu canlı organizmanın biyolojik beyni dinamik(plastik) ve analogtur.[3][4][5]
Derin öğrenme kavramı, 1940'lardan beri geliştirilen sinir ağlarına dayanmaktadır. 1980'ler ve 1990'lar boyunca, araştırmacılar geri yayılım (backpropagation) ve destek vektör makineleri gibi daha gelişmiş tekniklerle sinir ağları üzerinde çalıştılar. 2000'lerde, büyük miktarda etiketli verinin ve daha güçlü donanımların kullanılabilir hale gelmesiyle, derin öğrenme alanında büyük ilerlemeler kaydedildi. Bu dönemde, yapay sinir ağları ve derin öğrenme, tanıma ve sınıflandırma görevlerinde insan seviyesinde performans sergilemeye başladı.[6]
Derin öğrenme modelleri, farklı yapı ve işlevlere sahip çeşitli sinir ağlarından oluşur. Başlıca derin öğrenme modelleri şunlardır:[7]
Derin öğrenme algoritmaları, büyük veri kümesi üzerinde eğitilerek başarılı tahminler yapabilirler. Bu süreçte sıkça kullanılan teknikler şunlardır:
Derin öğrenme, bilgisayarlı görü ve ses tanıma, doğal dil işleme, tıbbi görüntü analizi ve oyun stratejileri gibi çeşitli alanlarda başarıyla kullanılmaktadır. Ayrıca, otomotiv, eğlence, finans ve sağlık gibi sektörlerde önemli rol oynar.[7]
Örnek kullanım alanları:[8]