Bu maddede kaynak listesi bulunmasına karşın metin içi kaynakların yetersizliği nedeniyle bazı bilgilerin hangi kaynaktan alındığı belirsizdir. Lütfen kaynakları uygun biçimde metin içine yerleştirerek maddenin geliştirilmesine yardımcı olun. (Aralık 2020) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin) |
Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.
Tanımda geçen nesne sözcüğü aslında yeterince açıklık ifade eden bir sözcük değildir. Ama sezgisel olarak, kümeyi oluşturan nesnelerin iyice tanımlı olduklarını; yani belirgin, başka nesnelerden ayırt edilebilir şeyler olduklarını düşünüyoruz demektir. Bir bakıma, bir kümeyi oluşturan nesnelerin tek tek neler olduklarını düşünmekten çok, bir arada düşünebilir olmaları önemsenir.
Bir kümeyi oluşturan nesnelere o kümenin ögeleri veya elemanları adı verilir. Güneş, evrendeki yıldızlar kümesinin bir ögesidir. Bir kümenin ögesi olan nesne o kümenin içinde veya kümeye aittir. Küme tanımına göre bir öge ya kümenin içinde ya da içinde değildir.
İki kümenin kesişimi her iki kümede bulunan ortak ögelerden oluşur. Venn diyagramında gösterimi.Küme kavramının matematiğe Georg Cantor (1845-1918) ile girdiği kabul edilir. Georg Cantor kümeyi iyi tanımlanmış ve birbirinden farklı nesneler topluluğu olarak tanımlamaktadır. İyi tanımlanmış ile kastedilen, herkes tarafından aynı şekilde anlaşılan bir tanımdır.
Cantor'dan öncede, adına küme denilmese bile matematikçiler bu kavramı yer yer örtülü bir şekilde kullanırdı. Cantor, kümeler kuramının temellerine ilişkin kapsamlı soruları ortaya koydu. Bu gelişmeler, matematiğe ve özellikle formalist akıma 20. yüzyılın ilk yarısında katkı verdi.
Almanca küme kelimesi "Menge", Bernard Bolzano tarafından Paradoxes of the Infinite adlı çalışmasında ortaya atıldı.
Küme teorisinin kurucularından Georg Cantor, transfinit küme teorisi üzerine yazdığı Beiträge zur Begründung der transfiniten Mengenlehre adlı çalışmasının başında şu tanımı verdi:
Bir küme, algı veya düşüncemizin belirli, ayırt edilebilir nesnelerinin bir araya toplanmasıdır — ve bu nesnelere kümenin elemanları denir.
Bertrand Russell, küme ve sınıf arasındaki ayrımı (bir küme bir sınıftır, ancak tüm kümelerin sınıfı gibi bazı sınıflar küme değildir; bkz. Russell paradoksu) tanıttı:
Matematikçiler bir manifold, aggregate, Menge, ensemble veya benzeri bir isimle uğraştıklarında, özellikle ilgili terimlerin sayısı sonlu olduğunda, ilgili nesneyi (ki aslında bir sınıftır) terimlerinin numaralandırılmasıyla tanımlanmış olarak kabul etmek ve bu durumda bir tek terimden oluşabileceği göz önünde bulundurulur, bu durumda o tek terim sınıftır.
Bir kümenin en önemli özelliği, elemanlara sahip olabilmesidir; bu elemanlar aynı zamanda üyeler olarak da adlandırılır. İki küme, aynı elemanlara sahip olduklarında eşittir. Daha kesin bir ifadeyle, A ve B kümeleri, A'nın her elemanı B'nin bir elemanıysa ve B'nin her elemanı da A'nın bir elemanıysa eşittir; bu özellik kümelerin genişletilebilirliği olarak adlandırılır.
Basit bir küme kavramı matematikte son derece faydalı olmuştur, ancak setlerin nasıl oluşturulabileceği konusunda herhangi bir kısıtlama olmadığında paradokslar ortaya çıkar:
Sezgisel kümeler kuramı, bir kümenin iyi tanımlanmış farklı elemanların bir koleksiyonu olarak tanımlar, ancak "iyi tanımlanmış" teriminin belirsizliği nedeniyle sorunlar ortaya çıkar.
Sezgisel küme teorisinin orijinal formülasyonundan bu yana, bu paradoksları çözmek için yapılan çabalarda, setlerin(küme) özellikleri aksiyomlarla tanımlanmıştır. Aksiyomatik küme teorisi, bir küme kavramını ilkel bir kavram olarak ele alır. Aksiyomların amacı, birinci dereceden mantığı kullanarak setlerle ilgili belirli matematiksel önermelerin (ifadelerin) doğruluğunu veya yanlışlığını çıkarmak için temel bir çerçeve sağlamaktır. Ancak, Gödel'in eksiklik teoremlerine göre, birinci dereceden mantığı kullanarak herhangi bir aksiyomatik küme teorisinin paradoks içermeyen olduğunu kanıtlamak mümkün değildir.
Matematik metinlerinde, kümeler genellikle A, B, C gibi büyük harflerle italik olarak gösterilir. Bir küme, özellikle elemanları da set olan durumlarda, bir koleksiyon veya aile olarak da adlandırılabilir.
Sıralı veya numaralı gösterim, bir kümenin elemanlarını süslü parantezler arasında virgülle ayrılarak listelemek suretiyle bir küme tanımlar:
A = { 1 , 2 , 3 , 4 } {\displaystyle \mathrm {A} =\{1,2,3,4\}}
B = { a l , a k , k a r a , b o z } {\displaystyle B=\{al,ak,kara,boz\}}
Bir kümede, önemli olan her elemanın içinde olup olmadığıdır, bu nedenle sıralı gösterimde elemanların sıralaması önemsizdir (buna karşılık, bir dizide, demette veya bir kümenin permütasyonunda, terimlerin sıralaması önemlidir). Örneğin, {2, 4, 6} ve {7, 4, 8, 6}aynı kümeyi temsil eder.
Çok sayıda elemana sahip olan setler, özellikle örtük bir desene uyanlar, üyelerin listesi '...' işareti kullanılarak kısaltılabilir. Örneğin, ilk bin pozitif tam sayı kümesi, sıralı gösterimde aşağıdaki gibi belirtilebilir:
{1, 2, 3, 4 ... 1000}
Sonsuz kümelerin sıralı gösterimiSonsuz bir set(küme), sonsuz bir eleman listesine sahip olan bir kümedir. Sonsuz bir seti sıralı gösterimde tanımlamak için, listeyin sonuna veya her iki ucuna da noktalama işareti konur ve bu şekilde liste sonsuz bir şekilde devam ettiği ifade edilir. Örneğin, pozitif olmayan tam sayıların kümesi aşağıdaki gibi sıralı gösterimde tanımlanabilir:
{0, 1, 2, 3, 4 ...}
ve tüm tamsayıların kümesi ise:
{... -3, -2, -1, 0, 1, 2, 3, 4 ...}
Bir küme tanımlamanın başka bir yolu, elemanların neler olduğunu belirlemek için bir kural kullanmaktır:
A, üyeleri ilk dört pozitif tamsayı olan bir küme olsun.B, Fransız bayrağının renklerinin kümesi olsun.Bu tür bir tanım, bir anlamsal açıklama olarak adlandırılır.
Set-builder gösterimi, elemanlar üzerindeki bir koşula dayalı olarak daha büyük bir kümeden bir seçimi belirtir. Örneğin, F kümesi aşağıdaki gibi tanımlanabilir:
Bir F kümesi, şu şekilde tanımlanabilir:
F = { n ∣ n bir tam sayı, ve 0 ≤ n ≤ 19 } . {\displaystyle F=\{n\mid n{\text{ bir tam sayı, ve }}0\leq n\leq 19\}.}
Bu gösterimde, dikey çizgi "|" "şunu ki" anlamına gelir ve tanım, "F, n'nin 0 ile 19 (dahil) arasında bir tamsayı olduğu tüm n sayılarının kümesidir" şeklinde yorumlanabilir. Bazı yazarlar dikey çizgi yerine iki nokta üst üste ":" kullanır.
Felsefe, tanım türlerini sınıflandırmak için belirli terimler kullanır:
Eğer B bir küme ve x B'nin bir elemanı ise, bu kısaltma şeklinde x ∈ B olarak yazılır ve aynı zamanda "x B'ye aittir" veya "x B'de bulunur" şeklinde okunabilir. "y B'nin bir elemanı değildir" ifadesi y ∉ B şeklinde yazılır ve aynı zamanda "y B'de değil" şeklinde okunabilir.
Örneğin, A = { 1 , 2 , 3 , 4 } {\displaystyle \mathrm {A} =\{1,2,3,4\}} , B = { m a v i , b e y a z , k i r m i z i } {\displaystyle B=\{mavi,beyaz,kirmizi\}} ve F = { n ∣ n bir tam sayı, ve 0 ≤ n ≤ 19 } . {\displaystyle F=\{n\mid n{\text{ bir tam sayı, ve }}0\leq n\leq 19\}.} kümelere göre,
4 ∈ A ve 12 ∈ F; 20 ∉ F ve yeşil∉ B.
Hiçbir elemanı olmayan kümeye boş küme (veya null kümesi) denir ve hiçbir elemana sahip olmayan tek kümedir. Boş küme ∅, ∅ {\displaystyle \emptyset } , ϕ, { {\displaystyle \{} } {\displaystyle \}} veya ϕ sembolleri ile gösterilir.
Önemli Not: { ∅ } {\displaystyle \{\emptyset \}} kümesi, boş küme ifade etmemektedir. Bu küme bir elemana sahiptir.
Bir birim kümesi, tam olarak bir elemana sahip olan bir kümedir. Bu tür bir küme {x} şeklinde yazılabilir, burada x elemandır. {x} kümesi ve x elemanı farklı anlamlara gelir; Halmos, bir şapka içeren bir kutunun şapkayla aynı olmadığı benzetmesini çizer.
Eğer kümenin A her elemanı aynı zamanda B kümesinde yer alıyorsa, A kümesi B'nin bir alt kümesi veya B içinde yer alan bir küme olarak tanımlanır. Bu durumu ifade etmek için A ⊆ B veya B ⊇ A şeklinde yazılır. İkinci gösterim B A'yı içerir şeklinde okunabilir. ⊆ tarafından sağlanan kümeler arası ilişkiye dahil etme veya içermeyi denir. İki küme birbirlerini içerdiklerinde eşittirler: A ⊆ B ve B ⊆ A, A = B ile eşdeğerdir.
Eğer A, B'nin bir alt kümesi ise ancak A, B'ye eşit değilse, A B'nin bir gerçek alt kümesi olarak adlandırılır. Bu durum A ⊊ B şeklinde yazılabilir. Benzer şekilde, B ⊋ A B'nin bir gerçek üst kümesi anlamına gelir, yani B A'yı içerir ve A'ya eşit değildir.
Üçüncü çift ⊂ ve ⊃ operatörleri farklı yazarlar tarafından farklı şekillerde kullanılır: bazı yazarlar A ⊂ B ve B ⊃ A ifadesini A'nın B'nin herhangi bir alt kümesini temsil etmek için kullanırken diğerleri A'nın yalnızca gerçek bir alt kümesi olduğu durumlar için A ⊂ B ve B ⊃ A kullanır.
Örnekler:
Boş küme, her kümenin bir alt kümesidir ve her küme kendisinin bir alt kümesidir:
Bir Euler diyagramı, bir küme koleksiyonunun grafiksel bir temsilidir; her bir küme, içindeki elemanlarıyla birlikte bir döngü tarafından çevrili bir düzlem bölgesi olarak gösterilir. Eğer A, B'nin bir alt kümesi ise, A'yı temsil eden bölge, B'yi temsil eden bölgenin tamamen içinde yer alır. İki kümenin ortak elemanı yoksa, bölgeler birbirleriyle örtüşmez.
Buna karşılık, bir Venn diyagramı, n kümenin grafiksel bir temsilidir ve n döngü düzlemi, seçilen n kümenin her biri için (belki hepsi veya hiçbiri), seçilen kümelere ait olan ve diğerlerine ait olmayan elemanlar için bir bölge olacak şekilde düzlemi 2n bölgeye böler. Örneğin, küme A, B ve C ise, A ve C içinde bulunan ve B'nin dışında olan elemanlar için bir bölge olmalıdır (böyle elemanlar olmasa bile).
Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.
Simge | Simgenin açıklaması | Simge | Simgenin açıklaması |
---|---|---|---|
∈ | Elemanıdır | ∪ | Birleşim |
∉ | Elemanı değildir | ∩ | Kesişim |
∋ | Eleman olarak kapsar | ⊎ | Birden fazla küme bileşenleri |
⊂ | Alt kümesi | ∅ | Boş küme |
⊃ | Üst kümesi | ≇ | Ne yaklaşık ne de fiili olarak |
⊆ | Alt küme veya eşit | ≤ | Küçük veya eşit |
⊇ | Üst küme veya eşit | ≥ | Büyük veya eşit |
≠ | Eşit değil | ≮ | Küçük değil |
< | Küçüktür | ≰ | Küçük veya eşit değil |
> | Büyüktür | ≱ | Büyük veya eşit değil |
≡ | Denktir | ≢ | Denk değil |
≈ | Hemen hemen eşit | ≅ | Yaklaşık olarak eşit |
∼ | Benzer | ⋚ | Küçük eşit veya büyük |
≫ | Çok daha büyük | ≪ | Çok daha küçük |
= | Eşit | ≠ | Eşit değil |
Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir.
Önemli Not: Eşit olan kümeler aynı zamanda denktir. Fakat denk kümeler eşit olmayabilir.
Matematikçilerin o kadar sık atıfta bulundukları matematiksel öneme sahip kümeler vardır ki, onları tanımlamak için özel isimler ve notasyon kuralları edinmişlerdir. Bu önemli kümeler, matematik metinlerinde kalın (örneğin Z {\displaystyle \mathbf {Z} } ) veya tahta kalın ( Z {\displaystyle \mathbb {Z} } ) yazı karakteriyle temsil edilir. Bunlar şunları içerir:
Yukarıda yer alan sayı kümelerinin her biri sonsuz sayıda elemana sahiptir. Her biri bulunduğu satırın altında yer alan kümelerin bir alt kümesidir.
Pozitif veya negatif sayı kümeleri, küme sembolünün üzerine + {\displaystyle +} veya − {\displaystyle -} sembolü konularak ifade edilmektedir. Örneğin; pozitif tam sayılar kümesi Z + {\displaystyle Z^{+}} , negatif tam sayılar kümesi Z − {\displaystyle Z^{-}} biçiminde ifade edilmektedir.
Bir A kümesinden B kümesine olan bir fonksiyon (veya eşleme), her bir A kümesi elemanına B kümesinden bir "çıktı" atayan bir kuraldır; daha formel olarak, bir fonksiyon, A kümesinin her elemanını tam olarak bir B kümesi elemanına bağlayan özel bir ilişkidir. Bir fonksiyon şu şekillerde adlandırılır:
İnjektif bir fonksiyon enjeksiyon, sürjektif bir fonksiyon sürjeksiyon ve bijektif bir fonksiyon bire-bir karşılıklı veya bijeksiyon olarak adlandırılır.
Bir kümenin cardinality (kardinalite) değeri, o kümenin eleman sayısıdır. Örneğin, B = {mavi, beyaz, kırmızı} kümesi için |B| = 3'dür. Kümelendirmede tekrar eden elemanlar sayılmaz, bu nedenle B = {mavi, beyaz, kırmızı, mavi, beyaz} kümesi için de |B| = 3'tür.
Daha kesin bir ifadeyle, iki küme aynı kardinaliteye sahipse, aralarında bire-bir'e ilişkilendirme sağlayan bir fonksiyon bulunur.
Boş kümenin kardinalite değeri sıfırdır.
Bazı kümelerin elemanları sayılamazdır veya sonsuzdur. Örneğin, doğal sayıların kümesi N sonsuzdur. Aslında, yukarıdaki bölümde bahsedilen tüm özel sayı kümeleri sonsuzdur. Sonsuz kümelerin kardinalite değeri sonsuzdur.
Bazı sonsuz kardinaliteler diğerlerinden daha büyüktür. Küme teorisi açısından en önemli sonuçlardan biri, gerçel sayıların kümesinin doğal sayıların kümesinden daha büyük kardinaliteye sahip olmasıdır. N'ye eşit veya daha küçük kardinalite değerine sahip kümeler "sayılabilir kümeler" olarak adlandırılır. Bunlar ya sonlu kümelerdir ya da N ile aynı kardinaliteye sahip "sayılabilir sonsuz kümelerdir". Bazı yazarlar "sayılabilir" terimini "sayılabilir sonsuz" anlamında kullanır. N'den daha büyük kardinalite değerine sahip kümeler "sayılabilir olmayan kümeler" olarak adlandırılır.
Ancak, bir doğru üzerindeki noktaların kardinalite değeri (yani bir doğru üzerindeki nokta sayısı), o doğrunun bir segmentinin, tüm düzlemin ve hatta herhangi bir sonlu boyutlu Öklidyen uzayın kardinalite değeriyle aynıdır.
Georg Cantor tarafından 1878 yılında formüle edilen süreklilik hipotezi, doğal sayıların kardinalite değeriyle bir doğruyun kardinalite değeri arasında bir kümenin olmadığını ifade eder. 1963 yılında Paul Cohen, süreklilik hipotezinin, Zermelo-Fraenkel küme teorisiyle (seçim aksiyomunu içeren) ZFC aksiyom sistemi içinde bağımsız olduğunu kanıtlamıştır.(ZFC, aksiyomatik küme teorisinin en yaygın olarak incelenen versiyonudur.)
Üzerinde işlem yapılan, bütün kümeleri kapsayan kümeye evrensel küme denir. Evrensel küme genellikle E {\displaystyle E} ile gösterilmektedir. Yabancı kaynaklarda çoğunlukla U {\displaystyle U} ile gösterilmektedir.