Bu yazıda Matematiksel problem'in heyecan verici dünyasına gireceğiz. Kökeninden bugünkü önemine kadar bu konunun/kişinin/tarihin tüm yönlerini keşfedeceğiz. Toplum üzerindeki etkisini, kültürel alandaki etkisini ve günlük yaşamın farklı yönleriyle ilgisini keşfedeceğiz. Analitik ve eleştirel bir yaklaşımla, bu büyüleyici konu/kişi/tarih hakkında eksiksiz ve objektif bir vizyon sunmak amacıyla Matematiksel problem etrafında var olan farklı bakış açılarını ve görüşleri inceleyeceğiz. Bu keşif ve öğrenme yolculuğumuzda bize katılın!
Matematik problemi, matematik yöntemleriyle temsil edilmeye, analiz edilmeye ve muhtemelen çözülmeye yatkın bir problemdir. Bu, güneş sistemindeki gezegenlerin yörüngelerini hesaplamak gibi gerçek dünya problemi veya Hilbert problemleri gibi daha soyut doğası olan bir problem ya da Russell Paradoksu gibi matematiğin doğasına atıfta bulunan bir problem de olabilir.
Çözülen matematik probleminin sonucu resmi olarak gösterilir ve incelenir.
Gayri resmi "gerçek dünya" matematik problemleri, "Adem'in beş elması vardır ve Can'a üç tane verdi. Kaç tane elması kaldı?" gibi somut bir ortamla ilgili sorulardır. Bu tür soruları çözmek, problemi çözmek için gerekli matematiği bilse bile, genellikle "5 - 3" gibi normal matematik egzersizlerinden daha zordur. Kelime problemleri olarak bilinen bu problemler, matematik eğitiminde öğrencilere gerçek dünyadaki durumları matematiğin soyut diline bağlamayı öğretmek için kullanılır.
Genel olarak, gerçek dünyadaki bir problemi çözmek için matematiği kullanmak amacıyla ilk adım, problemin bir matematiksel modelini oluşturmaktır. Bu, problemin ayrıntılarından soyutlamayı içerir ve modelleyici, orijinal problemi matematiksel bir probleme çevirirken gerekli yönleri kaybetmemeye dikkat etmelidir. Matematik dünyasında problem çözüldükten sonra, çözüm orijinal problemin bağlamına geri çevrilmelidir.
Dışarıdan bakıldığında, gerçek dünyada basitten karmaşığa çeşitli fenomenler vardır. Bazıları mikroskobik gözlemle karmaşık bir mekanizmaya sahipken, basit dış görünüşe sahiptirler. Gözlemin ölçeğine ve mekanizmanın kararlılığına bağlıdır. Sadece basit model tarafından açıklanan basit olgunun durumu değil, aynı zamanda basit modelin karmaşık olguyu açıklayabileceği durum da vardır. Örnek modellerden biri, kaos teorisinin bir modelidir.
Matematiğin tüm alanlarında soyut matematik problemleri ortaya çıkar. Matematikçiler genellikle kendi istedikleri için onları incelerken, böyle yaparak matematik alanı dışında uygulama bulan sonuçlar elde edilebilir. Teorik fizik tarihsel olarak zengin bir ilham kaynağı olmuştur ve olmaya devam etmektedir.
Klasik geometrinin sadece pusula ve düz kenarlı yapılarını kullanarak Daireyi kareleştirmek ve açıyı üçe bölmek ve genel beşinci dereceden denklemi cebirsel olarak çözmek gibi bazı soyut problemlerin çözülemeyeceği kesin olarak kanıtlanmıştır. Ayrıca çözümsüzlüğü kanıtlanamaz, Turing makinelerinin durma problemi gibi karar verilemeyen problemler de mevcuttur.
Pek çok soyut problem rutin olarak çözülebilir, diğerleri henüz tam bir çözüme yol açmadan bazı önemli ilerlemeler kaydedildiğinden, büyük bir çabayla çözüldü ve yine de Goldbach varsayımı ve Collatz varsayımı gibi bazıları tüm çözüm girişimlerine direndi. Nispeten yakın zamanda çözülen bazı iyi bilinen zor soyut problemler, Dört renk teoremi, Fermat'ın Son Teoremi ve Poincaré varsayımıdır.
Hayal gücümüzde yeni bir ufuk oluşturan matematiksel yeni fikirlerin tümü gerçek dünyaya uymuyor. Bilim, diğer her şeye karşı gelse bile, yalnızca yeni matematiği araştırmanın bir yoludur.[1] Modern matematiğin görüşüne göre, bir matematik problemini çözmenin, satranç (veya shogi veya go) gibi belirli kurallarla kısıtlanan bir sembol işlemine resmen indirgenebileceğini düşünmüştür.[2] Bu anlamda, Wittgenstein matematiği bir dil oyununa çevirir (de: Sprachspiel). Yani gerçek problemle ilgisi olmayan bir matematik problemi matematikçi tarafından önerilmekte veya çözmeye çalışılmaktadır. Ve matematikçinin kendisi için matematik çalışma ilgisi, eğer matematik bir oyunsa, matematiksel çalışmanın değer yargılarında yenilikten veya farklılıktan fazlasını yapmış olabilir. Popper, matematikte kabul edilebilen ancak diğer bilim alanlarında kabul görmeyen bu bakış açısını eleştirir.
Bilgisayarların, matematikçilerin yaptıklarını yapmak için herhangi bir motivasyon hissetmelerine gerek yoktur.[3][4] Biçimsel tanımlar ve bilgisayar kontrollü çıkarımlar matematik biliminin kesinlikle merkezindedir. Bilgisayarla kontrol edilebilir, sembol tabanlı metodolojilerin canlılığı, yalnızca kuralların doğasında değil, hayal gücümüze de bağlıdır.[4]
Değerlendirme için problem çözmeyi kullanan matematik eğitimcileri Alan H. Schoenfeld tarafından ifade edilen bir soruna sahiptir:
Aynı sorun neredeyse iki yüzyıl önce Sylvestre Lacroix tarafından da dile getirilmişti:
Problemlerin alıştırmalara bu şekilde indirgenmesi, tarihteki matematiğin karakteristiğidir. Örneğin, 19. yüzyılda Cambridge Mathematical Tripos'un hazırlıklarını anlatan Andrew Warwick, şunları yazdı: