Bugün, Riemann yüzeyi modern toplumda sürekli ilgi ve tartışma konusu olmaya devam ediyor. Son yıllarda artan ilgiyle Riemann yüzeyi hem uzmanların hem de hayranların ilgisini çekti. Akademide, medyada veya günlük konuşmalarda Riemann yüzeyi tartışmanın merkezi noktası haline geldi. Bu eğilim yalnızca yerel düzeyde değil, aynı zamanda küresel düzeyde de geçerlilik kazandı ve Riemann yüzeyi'in mevcut gerçekliğimiz üzerindeki önemini ve etkisini gösterdi. Artan bu ilgi göz önüne alındığında, Riemann yüzeyi'in içerdiği çeşitli boyutları ve perspektifleri kapsamlı bir şekilde analiz etmek, toplumumuzdaki kapsamını ve sonuçlarını daha iyi anlamak çok önemlidir.
Matematikte Riemann yüzeyi, özellikle karmaşık analizde bahsi geçen tek boyutlu karmaşık bir manifolddur. Bu yüzey(ler) ilk olarak Bernhard Riemann tarafından incelenmiş ve isimlendirilmiş. Riemann yüzeyleri, karmaşık düzlemin deforme olmuş versiyonları olarak düşünülebilir: her noktanın yakınında karmaşık düzlemin yerel olarak yamaları gibi görünürler, ama topolojisi oldukça farklı olabilmektedir.
Riemann yüzeylerindeki ana ilgi, holomorf fonksiyonların aralarında tanımlanabilmesidir. Riemann yüzeyleri günümüzde bu fonksiyonların global davranışı, özellikle de karekök ve diğer cebirsel fonksiyonlar veya logaritma gibi çok değerli fonksiyonların incelenmesi için doğal ortam olarak kabul edilmektedir. Her Riemann yüzeyi iki boyutlu gerçek bir analitik manifolddur (yani bir yüzey), ama holomorf fonksiyonların kesin tanımı için gerekli olan bir alt yapı (karmaşık bir yapı) içerir. İki boyutlu bir gerçek manifold, yönlendirilebilir ve ölçülebilir ise bir Riemann yüzeyine dönüştürülebilir. Dolayısıyla küre ve simit formunda karmaşık yapıları kabul eder, fakat Möbius şeridi, Klein şişesi ve gerçek yansıtmalı düzlem bunu yapmaz.[1][2][3][4][5][6][7]
Riemann yüzeyinin birkaç eşdeğer tanımı vardır:
Karmaşık manifoldlar arasında bulunan herhangi bir haritada olduğu gibi iki Riemann yüzeyi, M ve N arasındaki bir f: M → N fonksiyonuna holomorftur, eğer M atlasındaki her g tablosu ve N atlasındaki her h grafiği için h ∘ f ∘ g−1 haritası, tanımlandığı her yerde holomorftur (C'den C'ye giden bir fonksiyon olarak). İki holomorf haritanın bileşimi holomorftur. M'den N'ye giden fonksiyonun tersi de holomorf olan bijektif bir holomorf fonksiyondur. Varsa iki Riemann yüzeyi M ve N, biholomorf olarak isimlendirilir (ikinci koşulun otomatik olduğu ve bu nedenle ihmal edilebilir). Uyumlu olarak birbirine eşdeğer iki Riemann yüzeyi, tüm pratik amaçlar için aynıdır.[1][2]
Karmaşık bir manifold olan her Riemann yüzeyi, gerçek bir manifold olarak yönlendirilebilir. h = f(g−1 (z)) geçiş fonksiyonuna sahip karmaşık grafikler f ve g için h, z noktasındaki Jacobi'nin sadece gerçek doğrusal harita olduğu R2den R2ye uzanan bir harita olarak düşünülebilir. h'(z) karmaşık sayısıyla çarpma. Bununla birlikte, karmaşık bir α sayısı ile çarpmanın gerçek determinantı |α|2ye eşittir. Bu nedenle, Jakobiyen h'nin pozitif determinantı vardır. Sonuç olarak, karmaşık atlas yönlendirilmiş bir atlastır.[6][7]
Kompakt olmayan her Riemann yüzeyi, sabit olmayan holomorf fonksiyonları kabul eder (C'deki değerlerle). Aslında, kompakt olmayan her Riemann yüzeyi bir Stein manifoldudur.
Buna karşılık, kompakt bir Riemann yüzeyinde X, C değerlerine sahip her holomorf fonksiyon maksimum prensibi nedeniyle sabittir. Bununla birlikte, her zaman sabit olmayan meromorfik fonksiyonlar vardır (Riemann küresi C ∪ {∞} değerlerine sahip holomorf fonksiyonlar). Daha kesin olarak, X'in fonksiyon alanı, C(t)nin sonlu bir uzantısıdır, bir değişkendeki fonksiyon alanı, yani herhangi iki meromorfik fonksiyon cebirsel olarak bağımlıdır. Bu ifade daha yüksek boyutlara genelleme yapar. Meromorfik fonksiyonlar, Riemann teta fonksiyonları ve yüzeyin Abel-Jacobi haritası açısından oldukça açık bir şekilde verilebilir.[3][4][5][6][7]